

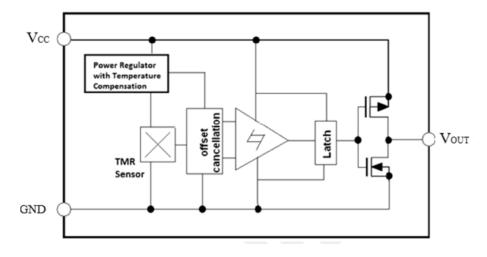
TMR Bipolar Switch

General Description

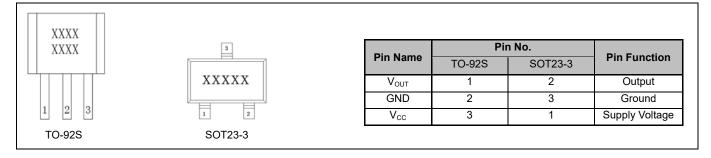
The TMR1201 is a digital latching bipolar magnetic switch that integrates TMR and CMOS technology in order to provide a magnetically triggered digital switch with high sensitivity, high speed, and low power consumption. It integrates a push-pull half-bridge TMR magnetic sensor and CMOS signal processing circuitry within the same package. Designed for use in high accuracy applications, this device includes an on-chip TMR voltage generator for precise magnetic sensing, TMR voltage amplifier and comparator, a Schmitt trigger to provide switching hysteresis for noise rejection, and CMOS push-pull output. An internal band gap regulator is used to provide temperature compensated supply voltage for internal circuits, and it allows a wide range of operating supply voltages. The TMR1201 features accurate switching points, fast response, a wide operating temperature range, and excellent ESD immunity. It is available in two packaging form factors: SOT23-3 (P/N TMR1201S), or TO-92S (P/N TMR1201T).

Features and Benefits

- Tunneling Magnetoresistance (TMR) Technology
- Bipolar Latching Operation
- Low Operate Points for High Sensitivity
- Very Low Power Consumption
- Compatible with a Wide Range of Supply Voltages
- Excellent Thermal Stability
- High-Speed Detection and High Frequency Response
- High ESD Tolerance


Applications

- Utility Meters including Water, Gas, and Heat Meters
- Solid State Switching
- Speed Sensing
- Rotor Position Sensing
- Linear Displacement Sensing



TMR1201S(Left), TMR1201T(Right)

Block Diagram

Pin Configuration

Absolute Maximum Ratings

Parameter	Symbol	Limit	Unit	
Supply Voltage	Vcc	7	V	
Reverse Supply Voltage	V _{RCC}	0.4	V	
Output Current	IOUTSINK	10	mA	
Magnetic Flux Density	В	1200	G	
ESD level(HBM)	V _{ESD}	6.5	kV	
Operating Temperature	Operating Temperature T _A		°C	
Storage Temperature	T _{stg}	-50 ~ 150	°C	

Electrical Characteristics (Vcc=3.0V, TA=25°C)

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Supply Voltage	Vcc	Operating	1.8	3.0	5.5	V
Output High Voltage	Vон		Vcc-0.3		Vcc	V
Output Low Voltage	Vol		0		0.2	V
Supply Current	lcc	Output Open		3.4	5	μA
Response Frequency	F			1		kHz
Power-On Time	t _{PO}			200		μs

Note: A $0.1\mu\text{F}$ capacitor is connected between V_{CC} and GND during all tests in the above table.

Units G

G

G

BOF

BR

 $\mathbf{B}_{\mathbf{H}}$

Parameters	Symbol	Min	Тур.	Max	
Operate Point	Вор	10	15	20	

-15

30

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0.0

-5.0

-10.0

-15.0

-40

-20

0

25

Temperature(°C)

Switch Points (G)

-10

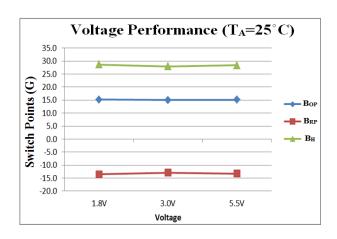
Temperature Performance (V_{CC}=3.0V)

40

85

125

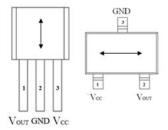
-20

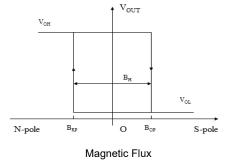

Magnetic Characteristics ($V_{CC} = 3.0V$, $T_A = 25^{\circ}C$)

Voltage and Temperature Characteristics

Brp Bh

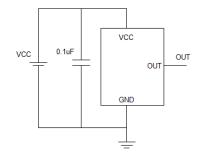
Release Point


Hysteresis

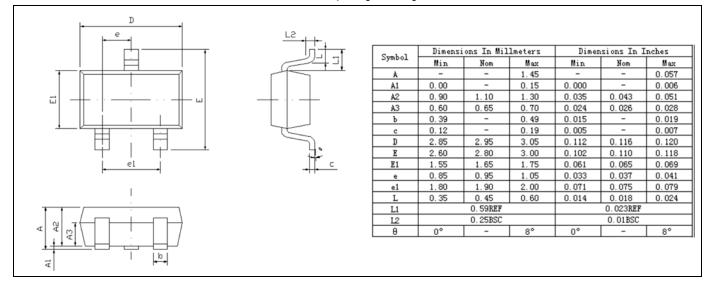

Output Behavior vs. Magnetic Pole

Parameter	Test Conditions	Output
South Pole	B > B _{OP}	Low (On)
North Pole	B < B _{RP}	High (Off)

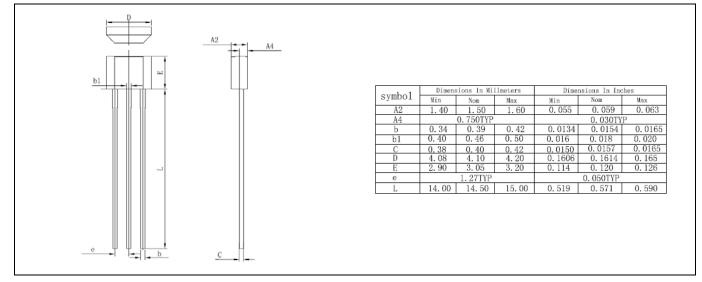
Note: when power is turned on under zero magnetic field, the output is "High".


Sensing Direction of Magnetic Field

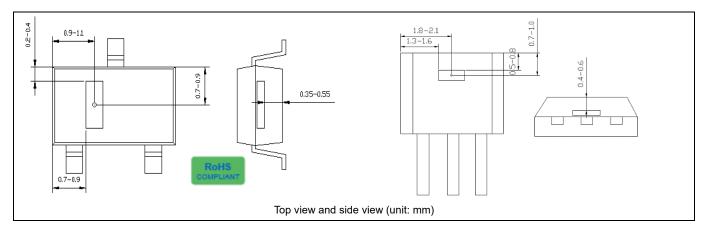
Application Information


The output of the TMR1201 switches low (turns on) when a magnetic field parallel to the TMR sensor exceeds the operate point threshold, B_{OP} . When the magnetic field is reduced below the release point, B_{RP} , the device output goes high (turns off). The differences between the magnetic operate point and release point is the hysteresis B_H of the device.

It is strongly recommended that an external bypass capacitor be connected in close proximity to the device between the supply and ground to reduce noise and improve switching accuracy. The typical value of the external capacitor is 0.1μ F.



Package Information


SOT23-3 package drawing

TO-92S package drawing

TMR Sensor Position

MultiDimension Technology Co., Ltd.

Address:No.7 Guangdong Road, Zhangjiagang Free Trade Zone, Jiangsu, 215634, China Web: www.dowaytech.com/en Email: info@dowaytech.com

The information provided herein by MultiDimension Technology Co., Ltd. (hereinafter MultiDimension) is believed to be accurate and reliable. Publication neither conveys nor implies any license under patent or other industrial or intellectual property rights. MultiDimension reserves the right to make changes to product specifications for the purpose of improving product quality, reliability, and functionality. MultiDimension does not assume any liability arising out of the application and use of its products. MultiDimension's customers using or selling this product for use in appliances, devices, or systems where malfunction can reasonably be expected to result in personal injury do so at their own risk and agree to fully indemnify MultiDimension for any damages resulting from such applications.